Home
Categories
EXPLORE
True Crime
Comedy
Society & Culture
Business
Sports
Technology
History
About Us
Contact Us
Copyright
© 2024 PodJoint
Podjoint Logo
US
00:00 / 00:00
Sign in

or

Don't have an account?
Sign up
Forgot password
https://is1-ssl.mzstatic.com/image/thumb/Podcasts211/v4/34/e4/14/34e41455-8b0d-9b6e-3290-e02f6da69696/mza_1821645445708339756.jpg/600x600bb.jpg
Machine Learning Street Talk (MLST)
Machine Learning Street Talk (MLST)
234 episodes
3 days ago
Welcome! We engage in fascinating discussions with pre-eminent figures in the AI field. Our flagship show covers current affairs in AI, cognitive science, neuroscience and philosophy of mind with in-depth analysis. Our approach is unrivalled in terms of scope and rigour – we believe in intellectual diversity in AI, and we touch on all of the main ideas in the field with the hype surgically removed. MLST is run by Tim Scarfe, Ph.D (https://www.linkedin.com/in/ecsquizor/) and features regular appearances from MIT Doctor of Philosophy Keith Duggar (https://www.linkedin.com/in/dr-keith-duggar/).
Show more...
Technology
RSS
All content for Machine Learning Street Talk (MLST) is the property of Machine Learning Street Talk (MLST) and is served directly from their servers with no modification, redirects, or rehosting. The podcast is not affiliated with or endorsed by Podjoint in any way.
Welcome! We engage in fascinating discussions with pre-eminent figures in the AI field. Our flagship show covers current affairs in AI, cognitive science, neuroscience and philosophy of mind with in-depth analysis. Our approach is unrivalled in terms of scope and rigour – we believe in intellectual diversity in AI, and we touch on all of the main ideas in the field with the hype surgically removed. MLST is run by Tim Scarfe, Ph.D (https://www.linkedin.com/in/ecsquizor/) and features regular appearances from MIT Doctor of Philosophy Keith Duggar (https://www.linkedin.com/in/dr-keith-duggar/).
Show more...
Technology
https://d3t3ozftmdmh3i.cloudfront.net/staging/podcast_uploaded_episode/4981699/4981699-1750130660999-4cea1e5f14e6.jpg
How AI Learned to Talk and What It Means - Prof. Christopher Summerfield
Machine Learning Street Talk (MLST)
1 hour 8 minutes 28 seconds
4 months ago
How AI Learned to Talk and What It Means - Prof. Christopher Summerfield

We interview Professor Christopher Summerfield from Oxford University about his new book "These Strange New Minds: How AI Learned to Talk and What It". AI learned to understand the world just by reading text - something scientists thought was impossible. You don't need to see a cat to know what one is; you can learn everything from words alone. This is "the most astonishing scientific discovery of the 21st century."People are split: some refuse to call what AI does "thinking" even when it outperforms humans, while others believe if it acts intelligent, it is intelligent. Summerfield takes the middle ground - AI does something genuinely like human reasoning, but that doesn't make it human.Sponsor messages:========Google Gemini: Google Gemini features Veo3, a state-of-the-art AI video generation model in the Gemini app. Sign up at https://gemini.google.comTufa AI Labs are hiring for ML Engineers and a Chief Scientist in Zurich/SF. They are top of the ARCv2 leaderboard! https://tufalabs.ai/========Table of Contents:Introduction & Setup00:00:00 Superman 3 Metaphor - Humans Absorbed by Machines00:02:01 Book Introduction & AI Debate Context00:03:45 Sponsor Segments (Google Gemini, Tufa Labs)Philosophical Foundations00:04:48 The Fractured AI Discourse00:08:21 Ancient Roots: Aristotle vs Plato (Empiricism vs Rationalism)00:10:14 Historical AI: Symbolic Logic and Its LimitsThe Language Revolution00:12:11 ChatGPT as the Rubicon Moment00:14:00 The Astonishing Discovery: Learning Reality from Words Alone00:15:47 Equivalentists vs Exceptionalists DebateCognitive Science Perspectives00:19:12 Functionalism and the Duck Test00:21:48 Brain-AI Similarities and Computational Principles00:24:53 Reconciling Chomsky: Evolution vs Learning00:28:15 Lamarckian AI vs Darwinian Human LearningThe Reality of AI Capabilities00:30:29 Anthropomorphism and the Clever Hans Effect00:32:56 The Intentional Stance and Nature of Thinking00:37:56 Three Major AI Worries: Agency, Personalization, DynamicsSocietal Risks and Complex Systems00:37:56 AI Agents and Flash Crash Scenarios00:42:50 Removing Frictions: The Lawfare Example00:46:15 Gradual Disempowerment Theory00:49:18 The Faustian Pact of TechnologyHuman Agency and Control00:51:18 The Crisis of Authenticity00:56:22 Psychology of Control vs Reward01:00:21 Dopamine Hacking and Variable ReinforcementFuture Directions01:02:27 Evolution as Goal-less Optimization01:03:31 Open-Endedness and Creative Evolution01:06:46 Writing, Creativity, and AI-Generated Content01:08:18 Closing RemarksREFS:Academic References (Abbreviated)Essential Books"These Strange New Minds" - C. Summerfield [00:02:01] - Main discussion topic"The Mind is Flat" - N. Chater [00:33:45] - Summerfield's favorite on cognitive illusions"AI: A Guide for Thinking Humans" - M. Mitchell [00:04:58] - Host's previous favorite"Principia Mathematica" - Russell & Whitehead [00:11:00] - Logic Theorist reference"Syntactic Structures" - N. Chomsky (1957) [00:13:30] - Generative grammar foundation"Why Greatness Cannot Be Planned" - Stanley & Lehman [01:04:00] - Open-ended evolutionKey Papers & Studies"Gradual Disempowerment" - D. Duvenaud [00:46:45] - AI threat model"Counterfeit People" - D. Dennett (Atlantic) [00:52:45] - AI societal risks"Open-Endedness is Essential..." - DeepMind/Rocktäschel/Hughes [01:03:42]Heider & Simmel (1944) [00:30:45] - Agency attribution to shapesWhitehall Studies - M. Marmot [00:59:32] - Control and health outcomes"Clever Hans" - O. Pfungst (1911) [00:31:47] - Animal intelligence illusionHistorical References"Logic Theorist" - Newell & Simon (1956) [00:10:45] - "First superintelligence""Computing Machinery..." - A. Turing (1950) - AI foundationsDartmouth Conference (1955) - McCarthy et al. - Birth of AI field"Logical Calculus..." - McCulloch & Pitts (1943) - Neural network foundationsPhilosophical Concepts<trunc>

Machine Learning Street Talk (MLST)
Welcome! We engage in fascinating discussions with pre-eminent figures in the AI field. Our flagship show covers current affairs in AI, cognitive science, neuroscience and philosophy of mind with in-depth analysis. Our approach is unrivalled in terms of scope and rigour – we believe in intellectual diversity in AI, and we touch on all of the main ideas in the field with the hype surgically removed. MLST is run by Tim Scarfe, Ph.D (https://www.linkedin.com/in/ecsquizor/) and features regular appearances from MIT Doctor of Philosophy Keith Duggar (https://www.linkedin.com/in/dr-keith-duggar/).