Home
Categories
EXPLORE
True Crime
Comedy
Society & Culture
Business
Sports
History
Fiction
About Us
Contact Us
Copyright
© 2024 PodJoint
00:00 / 00:00
Sign in

or

Don't have an account?
Sign up
Forgot password
https://is1-ssl.mzstatic.com/image/thumb/Podcasts221/v4/52/ab/cb/52abcb67-3575-0960-7313-79789f23ad70/mza_547998439152404077.jpg/600x600bb.jpg
LlamaCast
Shahriar Shariati
49 episodes
4 months ago
Daily podcast about the published articles in the LLM field.
Show more...
Technology
News,
Tech News,
Science,
Mathematics
RSS
All content for LlamaCast is the property of Shahriar Shariati and is served directly from their servers with no modification, redirects, or rehosting. The podcast is not affiliated with or endorsed by Podjoint in any way.
Daily podcast about the published articles in the LLM field.
Show more...
Technology
News,
Tech News,
Science,
Mathematics
https://d3wo5wojvuv7l.cloudfront.net/t_rss_itunes_square_1400/images.spreaker.com/original/879177db874692a5aa0e7ad0353a362c.jpg
Jigsaw Puzzles
LlamaCast
16 minutes
1 year ago
Jigsaw Puzzles
🧩 Jigsaw Puzzles: Splitting Harmful Questions to Jailbreak Large Language Models

This research paper investigates the vulnerabilities of large language models (LLMs) to "jailbreak" attacks, where malicious users attempt to trick the model into generating harmful content. The authors propose a new attack strategy called Jigsaw Puzzles (JSP) which breaks down harmful questions into harmless fractions and feeds them to the LLM in multiple turns, bypassing the model's built-in safeguards. The paper explores the effectiveness of JSP across different LLM models and harmful categories, analyzing the role of various prompt designs and splitting strategies. The authors also compare JSP's performance to other existing jailbreak methods and demonstrate its ability to overcome various defense mechanisms. The paper concludes by highlighting the importance of continued research and development of more robust defenses against such attacks.

📎 Link to paper

LlamaCast
Daily podcast about the published articles in the LLM field.