Home
Categories
EXPLORE
True Crime
Comedy
Society & Culture
Business
Sports
History
Music
About Us
Contact Us
Copyright
© 2024 PodJoint
00:00 / 00:00
Sign in

or

Don't have an account?
Sign up
Forgot password
https://is1-ssl.mzstatic.com/image/thumb/Podcasts221/v4/b8/af/66/b8af66fd-f36f-1995-540f-183a4332a946/mza_14571427792898916433.jpg/600x600bb.jpg
Iowa Type Theory Commute
Aaron Stump
178 episodes
2 months ago
To solve the problem raised in the last episode, I propose schematic affine recursion. We saw that affine lambda calculus (where lambda-bound variables are used at most once) plus structural recursion does not enforce termination, even if you restrict the recursor so that the function to be iterated is closed when you reduce ("closed at reduction"). You have to restrict it so that recursion terms are disallowed entirely unless the function to be iterated is closed ("closed at cons...
Show more...
Technology
Science,
Mathematics
RSS
All content for Iowa Type Theory Commute is the property of Aaron Stump and is served directly from their servers with no modification, redirects, or rehosting. The podcast is not affiliated with or endorsed by Podjoint in any way.
To solve the problem raised in the last episode, I propose schematic affine recursion. We saw that affine lambda calculus (where lambda-bound variables are used at most once) plus structural recursion does not enforce termination, even if you restrict the recursor so that the function to be iterated is closed when you reduce ("closed at reduction"). You have to restrict it so that recursion terms are disallowed entirely unless the function to be iterated is closed ("closed at cons...
Show more...
Technology
Science,
Mathematics
https://is1-ssl.mzstatic.com/image/thumb/Podcasts221/v4/b8/af/66/b8af66fd-f36f-1995-540f-183a4332a946/mza_14571427792898916433.jpg/600x600bb.jpg
Introduction to the Finite Developments Theorem
Iowa Type Theory Commute
15 minutes
7 months ago
Introduction to the Finite Developments Theorem
The finite developments theorem in pure lambda calculus says that if you select as set of redexes in a lambda term and reduce only those and their residuals (redexes that can be traced back as existing in the original set), then this process will always terminate. In this episode, I discuss the theorem and why I got interested in it.
Iowa Type Theory Commute
To solve the problem raised in the last episode, I propose schematic affine recursion. We saw that affine lambda calculus (where lambda-bound variables are used at most once) plus structural recursion does not enforce termination, even if you restrict the recursor so that the function to be iterated is closed when you reduce ("closed at reduction"). You have to restrict it so that recursion terms are disallowed entirely unless the function to be iterated is closed ("closed at cons...