
In unserer ersten PhD Pitches Folge ist Maike Behrendt vom Institut für Informatik zu Gast. Sie ist wissenschaftliche Mitarbeiterin und PhD-Studentin am Lehrstuhl für Machine Learning von Prof. Dr. Harmeling und stellt in einem 5-Minuten-Pitch ihre Doktorarbeit vor, in der sie sich mit Natural Language Processing, also der Verarbeitung von Sprache und Text mit Hilfe von Methoden des maschinellen Lernens, befasst.
Sie erklärt wie die momentan populären Transformer-Modelle funktionieren, wie man überhaupt Text in einen für Computer lesbare Zahlen verwandelt und wie die Zusammenarbeit in einem interdisziplinären Team mit Kommunikations- und Politikwissenschaftler*innen aussieht.
Natürlich gibt es wieder einige Entweder-Oder-Fragen und den ultimativen PhD-Survival-Tipp.
02:11 PhD Pitch 06:31 Zusammenarbeit mit Kommunikations- und Politikwissenschaftler*innen 09:24 Wie sehen die Vektoren mit semantischen Informationen aus? 11:22 Transformer-Modelle 15:23 Inwiefern unterscheidet sich das Natural Language Processing von anderen Machine-Learning-Methoden? 16:55 Wie unterscheidet sich das Training beim Reinforcement Learning im Gegensatz zu anderen Machine-Learning-Methoden? 19:07 Was ist der schwierigste Teil in der gesamten Pipeline? 23:14 Entweder-Oder-Fragen 25:09 PhD-Survival-Tipp
Ein Gespräch mit Maike Behrendt und Dr. Joana Grah