Home
Categories
EXPLORE
True Crime
Comedy
Society & Culture
Business
News
Sports
TV & Film
About Us
Contact Us
Copyright
© 2024 PodJoint
Podjoint Logo
US
00:00 / 00:00
Sign in

or

Don't have an account?
Sign up
Forgot password
https://is1-ssl.mzstatic.com/image/thumb/Features/v4/5f/88/96/5f8896e9-9be5-529a-af14-cc807367568a/mza_1382744875394257421.png/600x600bb.jpg
IEE 475: Simulating Stochastic Systems
Theodore P. Pavlic
25 episodes
21 hours ago
Archived lectures from IEE 475 (Simulating Stochastic System) given by Ted Pavlic at Arizona State University. A course on discrete event system simulation focused on Industrial Engineering undergraduate students or others learning to use good simulation methodologies.
Show more...
Courses
Education
RSS
All content for IEE 475: Simulating Stochastic Systems is the property of Theodore P. Pavlic and is served directly from their servers with no modification, redirects, or rehosting. The podcast is not affiliated with or endorsed by Podjoint in any way.
Archived lectures from IEE 475 (Simulating Stochastic System) given by Ted Pavlic at Arizona State University. A course on discrete event system simulation focused on Industrial Engineering undergraduate students or others learning to use good simulation methodologies.
Show more...
Courses
Education
https://is1-ssl.mzstatic.com/image/thumb/Features/v4/5f/88/96/5f8896e9-9be5-529a-af14-cc807367568a/mza_1382744875394257421.png/600x600bb.jpg
Lecture H (2025-10-28): Verification, Validation, and Calibration of Simulation Models
IEE 475: Simulating Stochastic Systems
1 week ago
Lecture H (2025-10-28): Verification, Validation, and Calibration of Simulation Models
At the start of this lecture, we review statistical topics and fitting techniques from Unit G (particularly Lecture G3, on goodness of fit). In particular, we review hypothesis testing fundamentals (type-I error, type-II error, statistical power, sensitivity, false positive rate, true negative rate, receiver operating characteristic, ROC, alpha, beta) and then go into examples of using Chi-squared and Kolmogorov–Smirnov tests for goodness of fit for arbitrary distributions. We also introduce Anderson–Darling (for flexibility and higher power) and Shapiro–Wilk (for high-powered normality testing). We then pivot to formally defining simulation verification, validation, and calibration and then introducing techniques that incorporate rigorous statistical tools into the validation and calibration process. We focus specifically on the use of the t-test (for confirming that populations of simulation data are consistent with the mean behaviors from the real systems they are meant to represent) and the power analysis (for understanding the conditions when a failure to detect a difference between simulation and real system allows for inferring that the simulation is sufficiently close to the real system).
IEE 475: Simulating Stochastic Systems
Archived lectures from IEE 475 (Simulating Stochastic System) given by Ted Pavlic at Arizona State University. A course on discrete event system simulation focused on Industrial Engineering undergraduate students or others learning to use good simulation methodologies.