Home
Categories
EXPLORE
True Crime
Comedy
Society & Culture
Business
News
Sports
TV & Film
About Us
Contact Us
Copyright
© 2024 PodJoint
Podjoint Logo
US
00:00 / 00:00
Sign in

or

Don't have an account?
Sign up
Forgot password
https://is1-ssl.mzstatic.com/image/thumb/Features/v4/5f/88/96/5f8896e9-9be5-529a-af14-cc807367568a/mza_1382744875394257421.png/600x600bb.jpg
IEE 475: Simulating Stochastic Systems
Theodore P. Pavlic
25 episodes
21 hours ago
Archived lectures from IEE 475 (Simulating Stochastic System) given by Ted Pavlic at Arizona State University. A course on discrete event system simulation focused on Industrial Engineering undergraduate students or others learning to use good simulation methodologies.
Show more...
Courses
Education
RSS
All content for IEE 475: Simulating Stochastic Systems is the property of Theodore P. Pavlic and is served directly from their servers with no modification, redirects, or rehosting. The podcast is not affiliated with or endorsed by Podjoint in any way.
Archived lectures from IEE 475 (Simulating Stochastic System) given by Ted Pavlic at Arizona State University. A course on discrete event system simulation focused on Industrial Engineering undergraduate students or others learning to use good simulation methodologies.
Show more...
Courses
Education
https://is1-ssl.mzstatic.com/image/thumb/Features/v4/5f/88/96/5f8896e9-9be5-529a-af14-cc807367568a/mza_1382744875394257421.png/600x600bb.jpg
Lecture G3 (2025-10-23) Input Modeling, Part 3 (Parameter Estimation and Goodness of Fit)
IEE 475: Simulating Stochastic Systems
1 week ago
Lecture G3 (2025-10-23) Input Modeling, Part 3 (Parameter Estimation and Goodness of Fit)
In this lecture, we (nearly) finish our coverage of Input Modeling, where the focus of this lecture is on parameter estimation and assessing goodness of fit. We review input modeling in general and then briefly review fundamentals of hypothesis testing. We discuss type-I error, p-values, type-II error, effect sizes, and statistical power. We discuss the dangers of using p-values at very large sample sizes (where small p-values are not meaningful) and at very small sample sizes (where large p-values are not meaningful). We give some examples of this applied to best-of-7 sports tournaments and voting. We then discuss different shape parameters (including location, scale, and rate), and then introduce summary statistics (sample mean and sample variance) and maximum likelihood estimation (MLE), with an example for a point estimate of the rate of an exponential. We introduce the chi-squared (lower power) and Kolmogorov–Smirnov (KS, high power) tests for goodness of fit, but we will go into them in more detail at the start of the next lecture.
IEE 475: Simulating Stochastic Systems
Archived lectures from IEE 475 (Simulating Stochastic System) given by Ted Pavlic at Arizona State University. A course on discrete event system simulation focused on Industrial Engineering undergraduate students or others learning to use good simulation methodologies.