Home
Categories
EXPLORE
True Crime
Comedy
Society & Culture
Business
Sports
History
Fiction
About Us
Contact Us
Copyright
© 2024 PodJoint
00:00 / 00:00
Sign in

or

Don't have an account?
Sign up
Forgot password
https://is1-ssl.mzstatic.com/image/thumb/Podcasts125/v4/5d/0f/43/5d0f431e-e3eb-fd57-0ef4-b58a5d3244a4/mza_4092867664547257049.jpg/600x600bb.jpg
Genetics
Oxford University
15 episodes
4 months ago
Dr Claire Palles studies whole genome sequencing data and targeted analyses with the aim of discovering genetic variants that affect susceptibility to colorectal cancer and Barrett’s oesophagus. The gastrointestinal track is responsible for more cancers than any other system. A condition called Barrett's oesophagus, characterised by a change in the cells lining the oesophagus, can lead to oesophageal adenocarcinoma. Only few people with Barrett's oesophagus will go on to develop cancer, and genome sequencing studies aim to identify genetic risk factors and therefore better target high-risk patients. Creative Commons Attribution-Non-Commercial-Share Alike 2.0 UK: England & Wales; http://creativecommons.org/licenses/by-nc-sa/2.0/uk/
Show more...
Education
RSS
All content for Genetics is the property of Oxford University and is served directly from their servers with no modification, redirects, or rehosting. The podcast is not affiliated with or endorsed by Podjoint in any way.
Dr Claire Palles studies whole genome sequencing data and targeted analyses with the aim of discovering genetic variants that affect susceptibility to colorectal cancer and Barrett’s oesophagus. The gastrointestinal track is responsible for more cancers than any other system. A condition called Barrett's oesophagus, characterised by a change in the cells lining the oesophagus, can lead to oesophageal adenocarcinoma. Only few people with Barrett's oesophagus will go on to develop cancer, and genome sequencing studies aim to identify genetic risk factors and therefore better target high-risk patients. Creative Commons Attribution-Non-Commercial-Share Alike 2.0 UK: England & Wales; http://creativecommons.org/licenses/by-nc-sa/2.0/uk/
Show more...
Education
https://is1-ssl.mzstatic.com/image/thumb/Podcasts125/v4/5d/0f/43/5d0f431e-e3eb-fd57-0ef4-b58a5d3244a4/mza_4092867664547257049.jpg/600x600bb.jpg
DNA replication and Cancer
Genetics
7 minutes
10 years ago
DNA replication and Cancer
DNA replication and Cancer The process of DNA replication is complex, and mistakes can lead to genome instability. Surveillance systems are not always successful which results in mutations that have the potential to inactivate genes or change their activity. This can lead to cancer, and many chemotherapeutic drugs are designed to disrupt DNA replication. A better understanding of these mechanisms can help us develop new drugs with reduced side effects. Creative Commons Attribution-Non-Commercial-Share Alike 2.0 UK: England & Wales; http://creativecommons.org/licenses/by-nc-sa/2.0/uk/
Genetics
Dr Claire Palles studies whole genome sequencing data and targeted analyses with the aim of discovering genetic variants that affect susceptibility to colorectal cancer and Barrett’s oesophagus. The gastrointestinal track is responsible for more cancers than any other system. A condition called Barrett's oesophagus, characterised by a change in the cells lining the oesophagus, can lead to oesophageal adenocarcinoma. Only few people with Barrett's oesophagus will go on to develop cancer, and genome sequencing studies aim to identify genetic risk factors and therefore better target high-risk patients. Creative Commons Attribution-Non-Commercial-Share Alike 2.0 UK: England & Wales; http://creativecommons.org/licenses/by-nc-sa/2.0/uk/