Home
Categories
EXPLORE
True Crime
Comedy
Society & Culture
Business
News
Sports
TV & Film
About Us
Contact Us
Copyright
© 2024 PodJoint
00:00 / 00:00
Sign in

or

Don't have an account?
Sign up
Forgot password
https://is1-ssl.mzstatic.com/image/thumb/Podcasts211/v4/96/47/ce/9647ce65-57e6-02b1-d851-69b290608552/mza_7972712280831409996.jpg/600x600bb.jpg
EEG Investiga
Escola de Economia, Gestão e Ciência Política
75 episodes
2 days ago
O "EEG Investiga" é um podcast da Escola de Economia, Gestão e Ciência Política da Universidade do Minho, dedicado à divulgação científica produzida na escola. Este programa explora investigações atuais, tendências e desafios, com foco na inovação e impacto social.
Show more...
Social Sciences
Science
RSS
All content for EEG Investiga is the property of Escola de Economia, Gestão e Ciência Política and is served directly from their servers with no modification, redirects, or rehosting. The podcast is not affiliated with or endorsed by Podjoint in any way.
O "EEG Investiga" é um podcast da Escola de Economia, Gestão e Ciência Política da Universidade do Minho, dedicado à divulgação científica produzida na escola. Este programa explora investigações atuais, tendências e desafios, com foco na inovação e impacto social.
Show more...
Social Sciences
Science
https://d3t3ozftmdmh3i.cloudfront.net/staging/podcast_uploaded_nologo/42428365/42428365-1732632564226-fa7625440dca2.jpg
72. Modelling dynamic interdependence in nonstationary variances with an application to carbon markets
EEG Investiga
7 minutes 43 seconds
1 week ago
72. Modelling dynamic interdependence in nonstationary variances with an application to carbon markets

Campos-Martins, S., & Amado, C. (2025). Modelling dynamic interdependence in nonstationary variances with an application to carbon markets. Journal of Economic Dynamics and Control, 173. https://doi.org/10.1016/j.jedc.2025.105062This paper introduces a new multivariate conditional correlation GARCH model, the Multiplicative Time-Varying Extended Conditional Correlation GARCH (MTV-ECC-GARCH), designed to capture dynamic interdependence among assets or markets under nonstationary variance. The model extends traditional CC-GARCH frameworks by incorporating two key features: a nonstationary long-term component that captures structural shifts in unconditional volatility, and a short-term dynamic component allowing cross-market volatility interactions. Ignoring nonstationarity, the study notes, can lead to spurious volatility transmission. Parameter estimation is conducted using a maximization by parts algorithm, which simplifies the computation by estimating each variance equation separately. A Lagrange Multiplier (LM) test is proposed to detect volatility interactions under nonstationary conditions. Applying the model to carbon futures (CEF) and a media-based climate concern index (CCM), results show significant dynamic interdependence—particularly from climate-related media concerns to carbon market volatility—when nonstationarity is properly modeled, highlighting the model’s robustness and practical relevance for financial volatility analysis.

EEG Investiga
O "EEG Investiga" é um podcast da Escola de Economia, Gestão e Ciência Política da Universidade do Minho, dedicado à divulgação científica produzida na escola. Este programa explora investigações atuais, tendências e desafios, com foco na inovação e impacto social.