Home
Categories
EXPLORE
True Crime
Comedy
Society & Culture
Business
News
Sports
TV & Film
About Us
Contact Us
Copyright
© 2024 PodJoint
00:00 / 00:00
Sign in

or

Don't have an account?
Sign up
Forgot password
https://is1-ssl.mzstatic.com/image/thumb/Podcasts211/v4/96/47/ce/9647ce65-57e6-02b1-d851-69b290608552/mza_7972712280831409996.jpg/600x600bb.jpg
EEG Investiga
Escola de Economia, Gestão e Ciência Política
75 episodes
2 days ago
O "EEG Investiga" é um podcast da Escola de Economia, Gestão e Ciência Política da Universidade do Minho, dedicado à divulgação científica produzida na escola. Este programa explora investigações atuais, tendências e desafios, com foco na inovação e impacto social.
Show more...
Social Sciences
Science
RSS
All content for EEG Investiga is the property of Escola de Economia, Gestão e Ciência Política and is served directly from their servers with no modification, redirects, or rehosting. The podcast is not affiliated with or endorsed by Podjoint in any way.
O "EEG Investiga" é um podcast da Escola de Economia, Gestão e Ciência Política da Universidade do Minho, dedicado à divulgação científica produzida na escola. Este programa explora investigações atuais, tendências e desafios, com foco na inovação e impacto social.
Show more...
Social Sciences
Science
https://d3t3ozftmdmh3i.cloudfront.net/staging/podcast_uploaded_nologo/42428365/42428365-1732632564226-fa7625440dca2.jpg
64. Analyzing Volatility Patterns of Bitcoin Using the GARCH Family
EEG Investiga
10 minutes 23 seconds
1 month ago
64. Analyzing Volatility Patterns of Bitcoin Using the GARCH Family

Muneer, S., Leal, C. C., & Oliveira, B. (2025). Analyzing Volatility Patterns of Bitcoin Using the GARCH Family Models. Operations Research Forum, 6(2). https://doi.org/10.1007/s43069-025-00482-5


This paper analyzes and forecasts Bitcoin volatility using the GARCH family of models. Bitcoin, known for its speculative nature and high volatility compared to gold, exhibits volatility persistence and long memory, justifying the use of GARCH models. The study employs daily closing prices from July 18, 2015, to September 4, 2023, totaling 2,970 observations. Six AR(1)-GARCH-type models were tested under a Gaussian distribution, with data divided into in-sample and out-of-sample periods. The AR(1)-ACGARCH(1,1) model provided the best fit according to log-likelihood, AIC, SIC, and HQ criteria, highlighting significant volatility persistence and a negative leverage effect. For volatility forecasting, the AR(1)-PGARCH(1,1) model achieved the best predictive performance, minimizing MAE, Theil, and MAPE errors. Results suggest that asymmetric models capture Bitcoin’s volatility dynamics more accurately. The findings emphasize Bitcoin’s relevance for portfolio and risk management and recommend future research using non-Gaussian distributions, such as the t-distribution, to enhance predictive accuracy.

EEG Investiga
O "EEG Investiga" é um podcast da Escola de Economia, Gestão e Ciência Política da Universidade do Minho, dedicado à divulgação científica produzida na escola. Este programa explora investigações atuais, tendências e desafios, com foco na inovação e impacto social.