Join us as we discuss Accurate KV Cache Quantization with Outlier Tokens Tracing, a deep dive into improving the efficiency of LLM inference. The authors enhance KV Cache quantization, a technique for reducing memory and compute costs during inference, by introducing a method to identify and exclude outlier tokens that hurt quantization accuracy, striking a better balance between efficiency and performance. Paper: https://arxiv.org/abs/2505.10938 Slides: https://bit.ly/45wolpr Join us for Ar...
All content for Deep Papers is the property of Arize AI and is served directly from their servers
with no modification, redirects, or rehosting. The podcast is not affiliated with or endorsed by Podjoint in any way.
Join us as we discuss Accurate KV Cache Quantization with Outlier Tokens Tracing, a deep dive into improving the efficiency of LLM inference. The authors enhance KV Cache quantization, a technique for reducing memory and compute costs during inference, by introducing a method to identify and exclude outlier tokens that hurt quantization accuracy, striking a better balance between efficiency and performance. Paper: https://arxiv.org/abs/2505.10938 Slides: https://bit.ly/45wolpr Join us for Ar...
Swarm: OpenAI's Experimental Approach to Multi-Agent Systems
Deep Papers
46 minutes
6 months ago
Swarm: OpenAI's Experimental Approach to Multi-Agent Systems
As multi-agent systems grow in importance for fields ranging from customer support to autonomous decision-making, OpenAI has introduced Swarm, an experimental framework that simplifies the process of building and managing these systems. Swarm, a lightweight Python library, is designed for educational purposes, stripping away complex abstractions to reveal the foundational concepts of multi-agent architectures. In this podcast, we explore Swarm’s design, its practical applications, and how it ...
Deep Papers
Join us as we discuss Accurate KV Cache Quantization with Outlier Tokens Tracing, a deep dive into improving the efficiency of LLM inference. The authors enhance KV Cache quantization, a technique for reducing memory and compute costs during inference, by introducing a method to identify and exclude outlier tokens that hurt quantization accuracy, striking a better balance between efficiency and performance. Paper: https://arxiv.org/abs/2505.10938 Slides: https://bit.ly/45wolpr Join us for Ar...