Du bist Data Scientist oder interessierst dich für Daten, Maschine Learning und AI? Dann ist dieser Podcast für dich. Wir teilen unsere Learnings aus über 180 Projekten, du bekommst Infos und Anregungen zu spannenden Themen rund um Daten.
Wir klären auf, geben Hinweise und teilen unsere Erfahrungen, die wir in mehr als 10 Jahren als Data Scientists im B2B Bereich gesammelt haben.
Wir decken auf, was wirklich hinter den Hypes und Trends der Data Science Branche steckt.
Wir hinterfragen, was ein Data Science Projekt erfolgreich macht und welche Faktoren es zum Scheitern verurteilen.
All content for Data Science Deep Dive is the property of INWT Statistics GmbH and is served directly from their servers
with no modification, redirects, or rehosting. The podcast is not affiliated with or endorsed by Podjoint in any way.
Du bist Data Scientist oder interessierst dich für Daten, Maschine Learning und AI? Dann ist dieser Podcast für dich. Wir teilen unsere Learnings aus über 180 Projekten, du bekommst Infos und Anregungen zu spannenden Themen rund um Daten.
Wir klären auf, geben Hinweise und teilen unsere Erfahrungen, die wir in mehr als 10 Jahren als Data Scientists im B2B Bereich gesammelt haben.
Wir decken auf, was wirklich hinter den Hypes und Trends der Data Science Branche steckt.
Wir hinterfragen, was ein Data Science Projekt erfolgreich macht und welche Faktoren es zum Scheitern verurteilen.
#83: Wie gut ist gut genug? Modellgütemaße richtig verstehen
Data Science Deep Dive
33 minutes
1 week ago
#83: Wie gut ist gut genug? Modellgütemaße richtig verstehen
In dieser Folge sprechen Mira und Amit über Modellgütemaße für kontinuierliche Zielvariablen – also darüber, wie man die Qualität von Vorhersagen richtig bewertet. Von MAE und RMSE bis hin zu R² und AIC/BIC: Wir erklären, was die einzelnen Kennzahlen aussagen, wo ihre Grenzen liegen und welche typischen Fallen es gibt. Außerdem geht's um Bias, Robustheit und warum der Kontext entscheidend ist. Und natürlich um die Frage: Welches Gütemaß passt eigentlich zu meinem Modell?
**Zusammenfassung**
Überblick über Gütemaße für kontinuierliche Zielgrößen
Bias, MAE, MAPE, sMAPE, MSE, RMSE, R², AIC/BIC im Vergleich
Vor- und Nachteile der einzelnen Metriken
Typische Fallstricke: Ausreißer, kleine Werte, verzerrte Interpretation
Tipps zur Auswahl des passenden Gütemaßes für den Use Case
Bedeutung von Repräsentativität, Validierung und Gewichtung
Fazit: Kombination mehrerer Gütemaße ist meist die beste Wahl
**Links**
Blogserie zum Bestimmtheitsmaß (R²): https://www.inwt-statistics.de/blog/bestimmtheitsmass_r2-teil1
#26: A/B-Testing: Erkenntnisse statt Bauchgefühl https://www.podbean.com/ew/pb-6fzpj-143cfb1
#43: Damit es im Live-Betrieb nicht kracht: Vermeidung von Overfitting & Data Leakage https://www.podbean.com/ew/pb-vw736-15baac0
Data Science Deep Dive
Du bist Data Scientist oder interessierst dich für Daten, Maschine Learning und AI? Dann ist dieser Podcast für dich. Wir teilen unsere Learnings aus über 180 Projekten, du bekommst Infos und Anregungen zu spannenden Themen rund um Daten.
Wir klären auf, geben Hinweise und teilen unsere Erfahrungen, die wir in mehr als 10 Jahren als Data Scientists im B2B Bereich gesammelt haben.
Wir decken auf, was wirklich hinter den Hypes und Trends der Data Science Branche steckt.
Wir hinterfragen, was ein Data Science Projekt erfolgreich macht und welche Faktoren es zum Scheitern verurteilen.