Home
Categories
EXPLORE
True Crime
Comedy
Society & Culture
Business
TV & Film
Sports
Health & Fitness
About Us
Contact Us
Copyright
© 2024 PodJoint
00:00 / 00:00
Sign in

or

Don't have an account?
Sign up
Forgot password
https://is1-ssl.mzstatic.com/image/thumb/Podcasts221/v4/75/db/da/75dbda7a-9c02-a923-c9a8-ac50c4a94f59/mza_7528638632772517919.jpg/600x600bb.jpg
Data Science Decoded
Mike E
32 episodes
3 days ago
We discuss seminal mathematical papers (sometimes really old 😎 ) that have shaped and established the fields of machine learning and data science as we know them today. The goal of the podcast is to introduce you to the evolution of these fields from a mathematical and slightly philosophical perspective. We will discuss the contribution of these papers, not just from pure a math aspect but also how they influenced the discourse in the field, which areas were opened up as a result, and so on. Our podcast episodes are also available on our youtube: https://youtu.be/wThcXx_vXjQ?si=vnMfs
Show more...
Mathematics
Science
RSS
All content for Data Science Decoded is the property of Mike E and is served directly from their servers with no modification, redirects, or rehosting. The podcast is not affiliated with or endorsed by Podjoint in any way.
We discuss seminal mathematical papers (sometimes really old 😎 ) that have shaped and established the fields of machine learning and data science as we know them today. The goal of the podcast is to introduce you to the evolution of these fields from a mathematical and slightly philosophical perspective. We will discuss the contribution of these papers, not just from pure a math aspect but also how they influenced the discourse in the field, which areas were opened up as a result, and so on. Our podcast episodes are also available on our youtube: https://youtu.be/wThcXx_vXjQ?si=vnMfs
Show more...
Mathematics
Science
https://d3t3ozftmdmh3i.cloudfront.net/staging/podcast_uploaded_nologo/41505637/41505637-1720347263425-80b9b83d77589.jpg
Data Science #33 - The Backpropagation method, Paul Werbos (1980)
Data Science Decoded
57 minutes 45 seconds
2 weeks ago
Data Science #33 - The Backpropagation method, Paul Werbos (1980)

On the 33rd episdoe we review Paul Werbos’s “Applications of Advances in Nonlinear Sensitivity Analysis” which presents efficient methods for computing derivatives in nonlinear systems, drastically reducing computational costs for large-scale models. Werbos, Paul J. "Applications of advances in nonlinear sensitivity analysis." System Modeling and Optimization: Proceedings of the 10th IFIP Conference New York City, USA, August 31–September 4, 1981These methods, especially the backward differentiation technique, enable better sensitivity analysis, optimization, and stochastic modeling across economics, engineering, and artificial intelligence. The paper also introduces Generalized Dynamic Heuristic Programming (GDHP) for adaptive decision-making in uncertain environments.Its importance to modern data science lies in laying the foundation for backpropagation, the core algorithm behind training neural networks. Werbos’s work bridged traditional optimization and today’s AI, influencing machine learning, reinforcement learning, and data-driven modeling.

Data Science Decoded
We discuss seminal mathematical papers (sometimes really old 😎 ) that have shaped and established the fields of machine learning and data science as we know them today. The goal of the podcast is to introduce you to the evolution of these fields from a mathematical and slightly philosophical perspective. We will discuss the contribution of these papers, not just from pure a math aspect but also how they influenced the discourse in the field, which areas were opened up as a result, and so on. Our podcast episodes are also available on our youtube: https://youtu.be/wThcXx_vXjQ?si=vnMfs