Home
Categories
EXPLORE
True Crime
Comedy
Business
Society & Culture
Sports
Health & Fitness
Technology
About Us
Contact Us
Copyright
© 2024 PodJoint
Loading...
0:00 / 0:00
Podjoint Logo
US
Sign in

or

Don't have an account?
Sign up
Forgot password
https://is1-ssl.mzstatic.com/image/thumb/Podcasts221/v4/75/db/da/75dbda7a-9c02-a923-c9a8-ac50c4a94f59/mza_7528638632772517919.jpg/600x600bb.jpg
Data Science Decoded
Mike E
31 episodes
2 days ago
We discuss seminal mathematical papers (sometimes really old 😎 ) that have shaped and established the fields of machine learning and data science as we know them today. The goal of the podcast is to introduce you to the evolution of these fields from a mathematical and slightly philosophical perspective. We will discuss the contribution of these papers, not just from pure a math aspect but also how they influenced the discourse in the field, which areas were opened up as a result, and so on. Our podcast episodes are also available on our youtube: https://youtu.be/wThcXx_vXjQ?si=vnMfs
Show more...
Mathematics
Science
RSS
All content for Data Science Decoded is the property of Mike E and is served directly from their servers with no modification, redirects, or rehosting. The podcast is not affiliated with or endorsed by Podjoint in any way.
We discuss seminal mathematical papers (sometimes really old 😎 ) that have shaped and established the fields of machine learning and data science as we know them today. The goal of the podcast is to introduce you to the evolution of these fields from a mathematical and slightly philosophical perspective. We will discuss the contribution of these papers, not just from pure a math aspect but also how they influenced the discourse in the field, which areas were opened up as a result, and so on. Our podcast episodes are also available on our youtube: https://youtu.be/wThcXx_vXjQ?si=vnMfs
Show more...
Mathematics
Science
https://d3t3ozftmdmh3i.cloudfront.net/staging/podcast_uploaded_nologo/41505637/41505637-1720347263425-80b9b83d77589.jpg
Data Science #32 - A Markovian Decision Process, Richard Bellman (1957)
Data Science Decoded
46 minutes 5 seconds
2 weeks ago
Data Science #32 - A Markovian Decision Process, Richard Bellman (1957)

We reviewed Richard Bellman’s “A Markovian Decision Process” (1957), which introduced a mathematical framework for sequential decision-making under uncertainty.


By connecting recurrence relations to Markov processes, Bellman showed how current choices shape future outcomes and formalized the principle of optimality, laying the groundwork for dynamic programming and the Bellman equationThis paper is directly relevant to reinforcement learning and modern AI: it defines the structure of Markov Decision Processes (MDPs), which underpin algorithms like value iteration, policy iteration, and Q-learning.


From robotics to large-scale systems like AlphaGo, nearly all of RL traces back to the foundations Bellman set in 1957

Data Science Decoded
We discuss seminal mathematical papers (sometimes really old 😎 ) that have shaped and established the fields of machine learning and data science as we know them today. The goal of the podcast is to introduce you to the evolution of these fields from a mathematical and slightly philosophical perspective. We will discuss the contribution of these papers, not just from pure a math aspect but also how they influenced the discourse in the field, which areas were opened up as a result, and so on. Our podcast episodes are also available on our youtube: https://youtu.be/wThcXx_vXjQ?si=vnMfs