Home
Categories
EXPLORE
True Crime
Comedy
Society & Culture
Sports
History
Education
Business
About Us
Contact Us
Copyright
© 2024 PodJoint
Loading...
0:00 / 0:00
Podjoint Logo
US
Sign in

or

Don't have an account?
Sign up
Forgot password
https://is1-ssl.mzstatic.com/image/thumb/Podcasts221/v4/75/db/da/75dbda7a-9c02-a923-c9a8-ac50c4a94f59/mza_7528638632772517919.jpg/600x600bb.jpg
Data Science Decoded
Mike E
29 episodes
5 days ago
We discuss seminal mathematical papers (sometimes really old 😎 ) that have shaped and established the fields of machine learning and data science as we know them today. The goal of the podcast is to introduce you to the evolution of these fields from a mathematical and slightly philosophical perspective. We will discuss the contribution of these papers, not just from pure a math aspect but also how they influenced the discourse in the field, which areas were opened up as a result, and so on. Our podcast episodes are also available on our youtube: https://youtu.be/wThcXx_vXjQ?si=vnMfs
Show more...
Mathematics
Science
RSS
All content for Data Science Decoded is the property of Mike E and is served directly from their servers with no modification, redirects, or rehosting. The podcast is not affiliated with or endorsed by Podjoint in any way.
We discuss seminal mathematical papers (sometimes really old 😎 ) that have shaped and established the fields of machine learning and data science as we know them today. The goal of the podcast is to introduce you to the evolution of these fields from a mathematical and slightly philosophical perspective. We will discuss the contribution of these papers, not just from pure a math aspect but also how they influenced the discourse in the field, which areas were opened up as a result, and so on. Our podcast episodes are also available on our youtube: https://youtu.be/wThcXx_vXjQ?si=vnMfs
Show more...
Mathematics
Science
https://d3t3ozftmdmh3i.cloudfront.net/staging/podcast_uploaded_nologo/41505637/41505637-1720347263425-80b9b83d77589.jpg
Data Science #23- The Markov Chain Monte Carl MCMC Paper review (1953)
Data Science Decoded
37 minutes 54 seconds
4 months ago
Data Science #23- The Markov Chain Monte Carl MCMC Paper review (1953)

In the 23rd episode we review the The 1953 paper Metropolis, Nicholas, et al. "Equation of state calculations by fast computing machines."

The journal of chemical physics 21.6 (1953): 1087-1092 which introduced the Monte Carlo method for simulating molecular systems, particularly focusing on two-dimensional rigid-sphere models.

The study used random sampling to compute equilibrium properties like pressure and density, demonstrating a feasible approach for solving analytically intractable statistical mechanics problems. The work pioneered the Metropolis algorithm, a key development in what later became known as Markov Chain Monte Carlo (MCMC) methods.

By validating the Monte Carlo technique against free volume theories and virial expansions, the study showcased its accuracy and set the stage for MCMC as a powerful tool for exploring complex probability distributions. This breakthrough has had a profound impact on modern AI and ML, where MCMC methods are now central to probabilistic modeling, Bayesian inference, and optimization.

These techniques enable applications like generative models, reinforcement learning, and neural network training, supporting the development of robust, data-driven AI systems.


Youtube: https://www.youtube.com/watch?v=gWOawt7hc88&t

Data Science Decoded
We discuss seminal mathematical papers (sometimes really old 😎 ) that have shaped and established the fields of machine learning and data science as we know them today. The goal of the podcast is to introduce you to the evolution of these fields from a mathematical and slightly philosophical perspective. We will discuss the contribution of these papers, not just from pure a math aspect but also how they influenced the discourse in the field, which areas were opened up as a result, and so on. Our podcast episodes are also available on our youtube: https://youtu.be/wThcXx_vXjQ?si=vnMfs