Home
Categories
EXPLORE
True Crime
Comedy
Society & Culture
Business
Sports
History
News
About Us
Contact Us
Copyright
© 2024 PodJoint
00:00 / 00:00
Sign in

or

Don't have an account?
Sign up
Forgot password
https://is1-ssl.mzstatic.com/image/thumb/Podcasts221/v4/c1/40/70/c14070a4-96b5-88b5-956a-cf906b5003ba/mza_15156277911616696472.png/600x600bb.jpg
Center for Advanced Studies (CAS) Research Focus Physics and Security
Center for Advanced Studies
11 episodes
8 months ago
Over the last decades, cryptography and computer security have gained central importance for the safety and prosperity of our open digital societies. Among others, they are essential for protecting critical public infrastructures; the privacy of citizens; our political institutions and their elected representatives; corporate and private intellectual property; the existing internet and the imminent internet of things; the worldwide financial system; international borders and travels; safety-critical commercial products, including pharmaceuticals; and the global supply chain. The CAS Research Focus “Physics and Security” carefully investigates how physical methods can complement the currently prevailing, but often vulnerable digital security solutions in the above sectors. Its aim is to enable strongly improved or even completely new security features via the explicit involvement of physics. To name three illustrating examples, the Research Focus exploits quantum phenomena to realize cryptographic encryption that provably cannot be broken. If quantum mechanics is correct, the encryption will remain secure forever, regardless of any future progress in algorithms or computing power. Secondly, it studies disordered optical nanostructures as highly unforgeable “labels” or “tags” for arbitrary objects of value. Contrary to RFID-tags, these new labels do not contain or store digital secret keys; they thus avoid costly key-protecting measures, combining maximal security with cost-effectiveness. As a final example, the Research Focus investigates how novel analog circuits and photonic devices can implement trustworthy communication nodes in the internet of things, despite the potentially non-trustworthy global manufacturers fabricating them. The outlined, highly transformative research necessitates inherently interdisciplinary efforts. To this end, LMU scientists from four different departments (computer science, physics, mathematics, and chemistry) take part in the Research Focuses’ working group. They are joined by various leading international colleagues in the scientific advisory council and as external fellows.
Show more...
Science
RSS
All content for Center for Advanced Studies (CAS) Research Focus Physics and Security is the property of Center for Advanced Studies and is served directly from their servers with no modification, redirects, or rehosting. The podcast is not affiliated with or endorsed by Podjoint in any way.
Over the last decades, cryptography and computer security have gained central importance for the safety and prosperity of our open digital societies. Among others, they are essential for protecting critical public infrastructures; the privacy of citizens; our political institutions and their elected representatives; corporate and private intellectual property; the existing internet and the imminent internet of things; the worldwide financial system; international borders and travels; safety-critical commercial products, including pharmaceuticals; and the global supply chain. The CAS Research Focus “Physics and Security” carefully investigates how physical methods can complement the currently prevailing, but often vulnerable digital security solutions in the above sectors. Its aim is to enable strongly improved or even completely new security features via the explicit involvement of physics. To name three illustrating examples, the Research Focus exploits quantum phenomena to realize cryptographic encryption that provably cannot be broken. If quantum mechanics is correct, the encryption will remain secure forever, regardless of any future progress in algorithms or computing power. Secondly, it studies disordered optical nanostructures as highly unforgeable “labels” or “tags” for arbitrary objects of value. Contrary to RFID-tags, these new labels do not contain or store digital secret keys; they thus avoid costly key-protecting measures, combining maximal security with cost-effectiveness. As a final example, the Research Focus investigates how novel analog circuits and photonic devices can implement trustworthy communication nodes in the internet of things, despite the potentially non-trustworthy global manufacturers fabricating them. The outlined, highly transformative research necessitates inherently interdisciplinary efforts. To this end, LMU scientists from four different departments (computer science, physics, mathematics, and chemistry) take part in the Research Focuses’ working group. They are joined by various leading international colleagues in the scientific advisory council and as external fellows.
Show more...
Science
https://cast.itunes.uni-muenchen.de/itunesu/icons/cas-physics-and-security-v2.png
Harnessing Physical Disorder for Photonic Security Applications
Center for Advanced Studies (CAS) Research Focus Physics and Security
1 hour 12 minutes 44 seconds
3 years ago
Harnessing Physical Disorder for Photonic Security Applications
Disorder and scattering in photonic systems have long been considered a nuisance that should be circumvented. Recently, disorder has been harnessed for a rapidly growing number of applications, including imaging, sensing, and spectroscopy. The chaotic dynamics and extreme sensitivity to external perturbations make random media particularly well-suited for optical cryptography and security applications. In this talk, Hui Cao presents two examples. The first one is massive-parallel ultrafast random bit generation using a multimode laser. Random numbers are widely used for information security, cryptography, stochastic modeling, and quantum simulations. Key technical challenges for physical random number generation are speed and scalability. She and her team demonstrate a new method for ultrafast generation of hundreds of random bit streams in parallel with a single laser diode. Spatio-temporal interference of many lasing modes in a specially designed cavity is introduced as a scheme for greatly accelerated random bit generation. Spontaneous emission, caused by quantum fluctuations, produces stochastic noise that makes the bit streams unpredictable. They achieve a total bit rate of 250~Tb/s with off-line post-processing, which is more than two orders of magnitude higher than the current post-processing record. Their approach is robust, compact, energy efficient, and should impact applications in secure communication and high-performance computation. The second example is remote key establishment using a long optical fiber. Using random media for distribution of secret keys between remote users is challenging since it requires the users have access to the same scattering sample. Hui Cao and her team utilize random mode mixing in a long multimode fiber to generate and distribute keys simultaneously. Fast fluctuations in fiber mode mixing provide the source of randomness for key generation, and optical reciprocity guarantees that the keys at the two ends of the fiber are identical. They experimentally demonstrate the scheme using classical light and off-the-shelf components, opening the door for a practically secure key establishment at the physical layer of fiber-optic networks.
Center for Advanced Studies (CAS) Research Focus Physics and Security
Over the last decades, cryptography and computer security have gained central importance for the safety and prosperity of our open digital societies. Among others, they are essential for protecting critical public infrastructures; the privacy of citizens; our political institutions and their elected representatives; corporate and private intellectual property; the existing internet and the imminent internet of things; the worldwide financial system; international borders and travels; safety-critical commercial products, including pharmaceuticals; and the global supply chain. The CAS Research Focus “Physics and Security” carefully investigates how physical methods can complement the currently prevailing, but often vulnerable digital security solutions in the above sectors. Its aim is to enable strongly improved or even completely new security features via the explicit involvement of physics. To name three illustrating examples, the Research Focus exploits quantum phenomena to realize cryptographic encryption that provably cannot be broken. If quantum mechanics is correct, the encryption will remain secure forever, regardless of any future progress in algorithms or computing power. Secondly, it studies disordered optical nanostructures as highly unforgeable “labels” or “tags” for arbitrary objects of value. Contrary to RFID-tags, these new labels do not contain or store digital secret keys; they thus avoid costly key-protecting measures, combining maximal security with cost-effectiveness. As a final example, the Research Focus investigates how novel analog circuits and photonic devices can implement trustworthy communication nodes in the internet of things, despite the potentially non-trustworthy global manufacturers fabricating them. The outlined, highly transformative research necessitates inherently interdisciplinary efforts. To this end, LMU scientists from four different departments (computer science, physics, mathematics, and chemistry) take part in the Research Focuses’ working group. They are joined by various leading international colleagues in the scientific advisory council and as external fellows.