Center for Advanced Studies (CAS) Research Focus Physics and Security
Center for Advanced Studies
11 episodes
8 months ago
Over the last decades, cryptography and computer security have gained central importance for the safety and prosperity of our open digital societies. Among others, they are essential for protecting critical public infrastructures; the privacy of citizens; our political institutions and their elected representatives; corporate and private intellectual property; the existing internet and the imminent internet of things; the worldwide financial system; international borders and travels; safety-critical commercial products, including pharmaceuticals; and the global supply chain.
The CAS Research Focus “Physics and Security” carefully investigates how physical methods can complement the currently prevailing, but often vulnerable digital security solutions in the above sectors. Its aim is to enable strongly improved or even completely new security features via the explicit involvement of physics. To name three illustrating examples, the Research Focus exploits quantum phenomena to realize cryptographic encryption that provably cannot be broken. If quantum mechanics is correct, the encryption will remain secure forever, regardless of any future progress in algorithms or computing power. Secondly, it studies disordered optical nanostructures as highly unforgeable “labels” or “tags” for arbitrary objects of value. Contrary to RFID-tags, these new labels do not contain or store digital secret keys; they thus avoid costly key-protecting measures, combining maximal security with cost-effectiveness. As a final example, the Research Focus investigates how novel analog circuits and photonic devices can implement trustworthy communication nodes in the internet of things, despite the potentially non-trustworthy global manufacturers fabricating them.
The outlined, highly transformative research necessitates inherently interdisciplinary efforts. To this end, LMU scientists from four different departments (computer science, physics, mathematics, and chemistry) take part in the Research Focuses’ working group. They are joined by various leading international colleagues in the scientific advisory council and as external fellows.
All content for Center for Advanced Studies (CAS) Research Focus Physics and Security is the property of Center for Advanced Studies and is served directly from their servers
with no modification, redirects, or rehosting. The podcast is not affiliated with or endorsed by Podjoint in any way.
Over the last decades, cryptography and computer security have gained central importance for the safety and prosperity of our open digital societies. Among others, they are essential for protecting critical public infrastructures; the privacy of citizens; our political institutions and their elected representatives; corporate and private intellectual property; the existing internet and the imminent internet of things; the worldwide financial system; international borders and travels; safety-critical commercial products, including pharmaceuticals; and the global supply chain.
The CAS Research Focus “Physics and Security” carefully investigates how physical methods can complement the currently prevailing, but often vulnerable digital security solutions in the above sectors. Its aim is to enable strongly improved or even completely new security features via the explicit involvement of physics. To name three illustrating examples, the Research Focus exploits quantum phenomena to realize cryptographic encryption that provably cannot be broken. If quantum mechanics is correct, the encryption will remain secure forever, regardless of any future progress in algorithms or computing power. Secondly, it studies disordered optical nanostructures as highly unforgeable “labels” or “tags” for arbitrary objects of value. Contrary to RFID-tags, these new labels do not contain or store digital secret keys; they thus avoid costly key-protecting measures, combining maximal security with cost-effectiveness. As a final example, the Research Focus investigates how novel analog circuits and photonic devices can implement trustworthy communication nodes in the internet of things, despite the potentially non-trustworthy global manufacturers fabricating them.
The outlined, highly transformative research necessitates inherently interdisciplinary efforts. To this end, LMU scientists from four different departments (computer science, physics, mathematics, and chemistry) take part in the Research Focuses’ working group. They are joined by various leading international colleagues in the scientific advisory council and as external fellows.
Center for Advanced Studies (CAS) Research Focus Physics and Security
1 hour 19 minutes 40 seconds
2 years ago
Analog is Dead, Long Live Analog!
In modern electronic systems, analog circuits are primarily used to condition and discretize physical signals, while most of the information processing occurs in the digital domain. The digital abstraction has allowed us to focus on bits as atomic carriers of information, largely ignore analog nuances in the underlying physical signals, and hence scale hierarchical systems toward transistor counts of over 100 billion on a single chip. While this approach has been a key enabler for managing complexity, it has always been scrutinized for its potential inefficiencies. Why don't we prefer to perform an addition by simply connecting two wires carrying analog currents? Similarly, why not compute an integral by collecting charges on a capacitor? This talk will aim to provide some answers to these questions, with the specific focus on domain-specific circuits for machine learning and hardware security. | Boris Murmann is Professor of Electrical Engineering at Stanford University and Fellow in the context of the CAS Research Focus "Physics and Security".
Center for Advanced Studies (CAS) Research Focus Physics and Security
Over the last decades, cryptography and computer security have gained central importance for the safety and prosperity of our open digital societies. Among others, they are essential for protecting critical public infrastructures; the privacy of citizens; our political institutions and their elected representatives; corporate and private intellectual property; the existing internet and the imminent internet of things; the worldwide financial system; international borders and travels; safety-critical commercial products, including pharmaceuticals; and the global supply chain.
The CAS Research Focus “Physics and Security” carefully investigates how physical methods can complement the currently prevailing, but often vulnerable digital security solutions in the above sectors. Its aim is to enable strongly improved or even completely new security features via the explicit involvement of physics. To name three illustrating examples, the Research Focus exploits quantum phenomena to realize cryptographic encryption that provably cannot be broken. If quantum mechanics is correct, the encryption will remain secure forever, regardless of any future progress in algorithms or computing power. Secondly, it studies disordered optical nanostructures as highly unforgeable “labels” or “tags” for arbitrary objects of value. Contrary to RFID-tags, these new labels do not contain or store digital secret keys; they thus avoid costly key-protecting measures, combining maximal security with cost-effectiveness. As a final example, the Research Focus investigates how novel analog circuits and photonic devices can implement trustworthy communication nodes in the internet of things, despite the potentially non-trustworthy global manufacturers fabricating them.
The outlined, highly transformative research necessitates inherently interdisciplinary efforts. To this end, LMU scientists from four different departments (computer science, physics, mathematics, and chemistry) take part in the Research Focuses’ working group. They are joined by various leading international colleagues in the scientific advisory council and as external fellows.