Neuroscience and artificial intelligence work better together. Brain inspired is a celebration and exploration of the ideas driving our progress to understand intelligence. I interview experts about their work at the interface of neuroscience, artificial intelligence, cognitive science, philosophy, psychology, and more: the symbiosis of these overlapping fields, how they inform each other, where they differ, what the past brought us, and what the future brings. Topics include computational neuroscience, supervised machine learning, unsupervised learning, reinforcement learning, deep learning, convolutional and recurrent neural networks, decision-making science, AI agents, backpropagation, credit assignment, neuroengineering, neuromorphics, emergence, philosophy of mind, consciousness, general AI, spiking neural networks, data science, and a lot more. The podcast is not produced for a general audience. Instead, it aims to educate, challenge, inspire, and hopefully entertain those interested in learning more about neuroscience and AI.
All content for Brain Inspired is the property of Paul Middlebrooks and is served directly from their servers
with no modification, redirects, or rehosting. The podcast is not affiliated with or endorsed by Podjoint in any way.
Neuroscience and artificial intelligence work better together. Brain inspired is a celebration and exploration of the ideas driving our progress to understand intelligence. I interview experts about their work at the interface of neuroscience, artificial intelligence, cognitive science, philosophy, psychology, and more: the symbiosis of these overlapping fields, how they inform each other, where they differ, what the past brought us, and what the future brings. Topics include computational neuroscience, supervised machine learning, unsupervised learning, reinforcement learning, deep learning, convolutional and recurrent neural networks, decision-making science, AI agents, backpropagation, credit assignment, neuroengineering, neuromorphics, emergence, philosophy of mind, consciousness, general AI, spiking neural networks, data science, and a lot more. The podcast is not produced for a general audience. Instead, it aims to educate, challenge, inspire, and hopefully entertain those interested in learning more about neuroscience and AI.
BI 218 Chris Rozell: Brain Stimulation and AI for Mental Disorders
Brain Inspired
1 hour 46 minutes 39 seconds
5 days ago
BI 218 Chris Rozell: Brain Stimulation and AI for Mental Disorders
Support the show to get full episodes, full archive, and join the Discord community.
We are in an exciting time in the cross-fertilization of the neurotech industry and the cognitive sciences. My guest today is Chris Rozell, who sits in that space that connects neurotech and brain research. Chris runs the Structured Information for Precision Neuroengineering Lab at Georgia Tech University, and he was just named the inaugural director of Georgia Tech’s Institute for Neuroscience, Neurotechnology, and Society. I think this is the first time on brain inspired we've discussed stimulating brains to treat mental disorders. I think. Today we talk about Chris's work establishing a biomarker from brain recordings of patients with treatment resistant depression, a specific form of depression. These are patients who have deep brain stimulation electrodes implanted in an effort to treat their depression. Chris and his team used that stimulation in conjunction with brain recordings and machine learning tools to predict how effective the treatment will be under what circumstances, and so on, to help psychiatrists better treat their patients. We'll get into the details and surrounding issues. Toward the end we also talk about Chris's unique background and path and approach, and why he thinks interdisciplinary research is so important. He's one of the most genuinely well intentioned people I've met, and I hope you're inspired by his research and his story.
Structured Information for Precision Neuroengineering Lab.
Twitter: @crozSciTech.
Related papers
Cingulate dynamics track depression recovery with deep brain stimulation.
Story Collider: Wired Lives
0:00 - Intro
3:20 - Overview of the study
17:11 - Closed and open loop stimulation
19:34 - Predicting recovery
28:45 - Control knob for treatment
39:04 - Historical and modern brain stimulation
49:07 - Treatment resistant depression
53:44 - Control nodes complex systems
1:01:06 - Explainable generative AI for a biomarker
1:16:40 - Where are we and what are the obstacles?
1:21:32 - Interface Neuro
1:24:55 - Why Chris cares
Brain Inspired
Neuroscience and artificial intelligence work better together. Brain inspired is a celebration and exploration of the ideas driving our progress to understand intelligence. I interview experts about their work at the interface of neuroscience, artificial intelligence, cognitive science, philosophy, psychology, and more: the symbiosis of these overlapping fields, how they inform each other, where they differ, what the past brought us, and what the future brings. Topics include computational neuroscience, supervised machine learning, unsupervised learning, reinforcement learning, deep learning, convolutional and recurrent neural networks, decision-making science, AI agents, backpropagation, credit assignment, neuroengineering, neuromorphics, emergence, philosophy of mind, consciousness, general AI, spiking neural networks, data science, and a lot more. The podcast is not produced for a general audience. Instead, it aims to educate, challenge, inspire, and hopefully entertain those interested in learning more about neuroscience and AI.