The podcast where we use AI to breakdown the recent AI papers and provide simplified explanations of intricate AI topics for educational purposes.
The content presented here is generated automatically by utilizing LLM and text to speech technologies. While every effort is made to ensure accuracy, any potential misrepresentations or inaccuracies are unintentional due to evolving technology. We value your feedback to enhance our podcast and provide you with the best possible learning experience.
If you see a paper that you want us to cover or you have any feedback, please reach out to us on twitter https://twitter.com/agi_breakdown
All content for AI Breakdown is the property of agibreakdown and is served directly from their servers
with no modification, redirects, or rehosting. The podcast is not affiliated with or endorsed by Podjoint in any way.
The podcast where we use AI to breakdown the recent AI papers and provide simplified explanations of intricate AI topics for educational purposes.
The content presented here is generated automatically by utilizing LLM and text to speech technologies. While every effort is made to ensure accuracy, any potential misrepresentations or inaccuracies are unintentional due to evolving technology. We value your feedback to enhance our podcast and provide you with the best possible learning experience.
If you see a paper that you want us to cover or you have any feedback, please reach out to us on twitter https://twitter.com/agi_breakdown
Scaling Instruction-Based Video Editing with a High-Quality Synthetic Dataset
AI Breakdown
6 minutes
1 week ago
Scaling Instruction-Based Video Editing with a High-Quality Synthetic Dataset
In this episode, we discuss Scaling Instruction-Based Video Editing with a High-Quality Synthetic Dataset by Qingyan Bai, Qiuyu Wang, Hao Ouyang, Yue Yu, Hanlin Wang, Wen Wang, Ka Leong Cheng, Shuailei Ma, Yanhong Zeng, Zichen Liu, Yinghao Xu, Yujun Shen, Qifeng Chen. The paper presents Ditto, a comprehensive framework that generates large-scale, high-quality training data for instruction-based video editing by combining an advanced image editor with an in-context video generator. Ditto uses an efficient, distilled model with a temporal enhancer and an intelligent agent to ensure scalable, diverse, and high-fidelity video edits. Leveraging this framework, the authors created the Ditto-1M dataset and trained the Editto model, achieving state-of-the-art performance in following editing instructions.
AI Breakdown
The podcast where we use AI to breakdown the recent AI papers and provide simplified explanations of intricate AI topics for educational purposes.
The content presented here is generated automatically by utilizing LLM and text to speech technologies. While every effort is made to ensure accuracy, any potential misrepresentations or inaccuracies are unintentional due to evolving technology. We value your feedback to enhance our podcast and provide you with the best possible learning experience.
If you see a paper that you want us to cover or you have any feedback, please reach out to us on twitter https://twitter.com/agi_breakdown