Home
Categories
EXPLORE
True Crime
Comedy
Society & Culture
Business
News
Sports
TV & Film
About Us
Contact Us
Copyright
© 2024 PodJoint
Podjoint Logo
US
00:00 / 00:00
Sign in

or

Don't have an account?
Sign up
Forgot password
https://is1-ssl.mzstatic.com/image/thumb/Podcasts211/v4/a6/c7/9c/a6c79c25-4890-f18f-307d-db7e13a492c6/mza_4202077245557488150.jpg/600x600bb.jpg
Advanced Machine Learning
ComputerScience
11 episodes
1 week ago
Machine learning (ML) is a field of computer science that allows systems to learn from experience and improve their performance. ML is used to solve problems that are difficult or impossible to program explicitly, such as speech recognition and navigating on Mars. ML is similar to statistics, but its focus is on building autonomous agents rather than helping humans draw conclusions. ML can be supervised (expected output is given) or unsupervised (no expected output given).
Show more...
Courses
Education
RSS
All content for Advanced Machine Learning is the property of ComputerScience and is served directly from their servers with no modification, redirects, or rehosting. The podcast is not affiliated with or endorsed by Podjoint in any way.
Machine learning (ML) is a field of computer science that allows systems to learn from experience and improve their performance. ML is used to solve problems that are difficult or impossible to program explicitly, such as speech recognition and navigating on Mars. ML is similar to statistics, but its focus is on building autonomous agents rather than helping humans draw conclusions. ML can be supervised (expected output is given) or unsupervised (no expected output given).
Show more...
Courses
Education
https://d3t3ozftmdmh3i.cloudfront.net/staging/podcast_uploaded_nologo/42470455/42470455-1731886065784-58826d4cb249e.jpg
07. - Generative Adversarial Networks (GANs)
Advanced Machine Learning
32 minutes 52 seconds
11 months ago
07. - Generative Adversarial Networks (GANs)

The source is a series of lecture notes on Generative Adversarial Networks (GANs). It begins with an introduction to generative models, comparing and contrasting them with discriminative models, and then introduces the concept of adversarial training, explaining how GANs work. The notes then dive into the different architectures and training procedures for GANs, including maximum likelihood estimation, KL divergence, and the minimax game formulation. They explain why GANs are so powerful for generating realistic data and describe some common training problems and their solutions, such as mode collapse and non-convergence. Finally, the notes discuss several GAN extensions, including conditional GANs, InfoGANs, CycleGANs, and LAPGANs, demonstrating their various applications in areas like image-to-image translation, text-to-image synthesis, and face aging.

Advanced Machine Learning
Machine learning (ML) is a field of computer science that allows systems to learn from experience and improve their performance. ML is used to solve problems that are difficult or impossible to program explicitly, such as speech recognition and navigating on Mars. ML is similar to statistics, but its focus is on building autonomous agents rather than helping humans draw conclusions. ML can be supervised (expected output is given) or unsupervised (no expected output given).