Машинне навчання (Machine Learning aka ML), програмування і драми в айті.
🇺🇦україномовний, наскільки ми можемо🇺🇦
Про технології і штучний інтелект від айтівців.
All content for Опівночні Балачки is the property of Денис, Ігор, Саша and is served directly from their servers
with no modification, redirects, or rehosting. The podcast is not affiliated with or endorsed by Podjoint in any way.
Машинне навчання (Machine Learning aka ML), програмування і драми в айті.
🇺🇦україномовний, наскільки ми можемо🇺🇦
Про технології і штучний інтелект від айтівців.
0:30 - 1:18 — рекомендаційна система для банок на донати - поповнюйте рахунки Повернись Живим
1:19 - 5:45 — Дмитро (ex-Giphy, CTO@S-PRO) розказує, чому він хороша людина на поговорити про рекомендаційні системи
5:46 - 8:10 — чутки про те, в який ML/AI хочуть вкладати гроші європейські компанії
8:10 - 11:43 — визначимо проблему рекомендацій, говоримо про задачу отримання інформації (information retrieval)
11:44 - 12:20 — чому задачу рекомендацій варто розбивати на підсистеми
12:21 - 17:15 — candidate generation – бази даних, векторні індекси, текстові індекси
17:16 - 19:20 — що таке precision та recall, скільки потрібно сіньйорів…
19:21 - 22:20 — чому фільтрувати кандидатів в рекомендації є хорошою ідеєю
22:21 - 30:50 — на чому тренувати рекомендаційну систему: не забудьте полайкати наш подкаст на вашій улюбленій платформі!
30:51 - 40:45 – для чого потрібні офлайн та онлайн метрики; роздумуємо про інтуїцію метрик для оцінки якості рекомендацій
40:46 - 46:50 — чому Mean Reciprocal Rank (MRR) — ймовірно, не найкращий вибір для метрики, говоримо про Expected Reciprocal Rank (ERR) — чому структура гріда рекомендацій має значення
Машинне навчання (Machine Learning aka ML), програмування і драми в айті.
🇺🇦україномовний, наскільки ми можемо🇺🇦
Про технології і штучний інтелект від айтівців.